Design and Evaluation of Tool Extensions for Power Consumption Measurement in Parallel Systems

نویسنده

  • Timo Minartz
چکیده

In an effort to reduce the energy consumption of high performance computing centers, a number of new approaches have been developed in the last few years. One of these approaches is to switch hardware to lower power states in promising parallel application phases. A test cluster is designed with high performance computing nodes supporting multiple power saving mechanisms comparable to mobile devices. Each of the nodes is connected to power measurement equipment to investigates the power saving potential under different load scenarios of the specific hardware. However, statically switching the power saving mechanisms usually increases the application runtime. As a consequence, no energy can be saved. Contrary to static switching strategies, dynamic switching strategies consider the hardware usage in the application phases to switch between the different modes without increasing the application runtime. Even if the concepts are already quite clear, tools to identify application phases and to determine impact on performance, power and energy are still rare. This thesis designs and evaluates tool extensions for power consumption measurement in parallel systems with the final goal to characterize and identify energy-efficiency hot spots in scientific applications. Using offline tracing, the metrics are collected in trace files and can be visualized or post-processed after the application run. The timeline-based visualization tools Sunshot and Vampir are used to correlate parallel applications with the energy-related metrics. With these tracing and visualization capabilities, it is possible to evaluate the quality of energy-saving mechanisms, since waiting times in the application can be related to hardware power states. Using the energy-efficiency benchmark eeMark, typical hardware usage pattern are identified to characterize the workload, the impact on the node power consumption and finally the potential for energy saving. To exploit the developed extensions, four scientific applications are analyzed to evaluate the whole approach. Appropriate phases of the parallel applications are manually instrumented to reduce the power consumption with the final goal of saving energy for the whole application run on the test cluster. This thesis provides a software interface for the efficient management of the power saving modes per compute node to be exploited by application programmers. All analyzed applications consist of several, different calculation-intensive compute phases and have a considerable power and energy-saving potential which cannot be exhausted by traditional, utilization-based mechanisms implemented in the operating system. Reducing the processor frequency in communication and I/O phases can also gain remarkable savings for the presented applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Petri-net based modeling tool, for analysis and evaluation of computer systems

Petri net is one of the most popular methods in modeling and evaluation of concurrent and event-based systems. Different tools have been created to support modeling and simulation of different extensions of Petri net in different applications. Each tool supports some extensions and some features. In this work a Petri net based modeling and evaluation tool is presented that not only supports dif...

متن کامل

ضرب‌کننده و ضرب‌جمع‌کننده پیمانه 2n+1 برای پردازنده سیگنال دیجیتال

Nowadays, digital signal processors (DSPs) are appropriate choices for real-time image and video processing in embedded multimedia applications not only due to their superior signal processing performance, but also of the high levels of integration and very low-power consumption. Filtering which consists of multiple addition and multiplication operations, is one of the most fundamental operatio...

متن کامل

Reliability assessment of power distribution systems using disjoint path-set algorithm

Finding the reliability expression of different substation configurations can help design a distribution system with the best overall reliability. This paper presents a computerized a nd implemented algorithm, based on Disjoint Sum of Product (DSOP) algorithm. The algorithm was synthesized and applied for the first time to the determination of reliability expression of a substation to determine...

متن کامل

A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube ‎FET technology for use in arithmetic units

In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...

متن کامل

High speed Radix-4 Booth scheme in CNTFET technology for high performance parallel multipliers

A novel and robust scheme for radix-4 Booth scheme implemented in Carbon Nanotube Field-Effect Transistor (CNTFET) technology has been presented in this paper. The main advantage of the proposed scheme is its improved speed performance compared with previous designs. With the help of modifications applied to the encoder section using Pass Transistor Logic (PTL), the corresponding capacitances o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013